
Predicting the Infinite Dilution Activity
Coefficient with Machine Learning

Guido Petri

Technical University of Berlin
Institute of Process Engineering

June 4th, 2019

Advisors
Prof. Dr.-Ing. Jadran Vrabec - Technical University of Berlin - vrabec@tu-berlin.de

Dr.-Ing. Erik Esche - Technical University of Berlin - erik.esche@tu-berlin.de
Dr. Ian Bell - National Institute of Standards and Technology - ian.bell@nist.gov

Dr.-Ing. Andreas Jäger - Technical University of Dresden - andreas.jaeger@tu-dresden.de

2

Abstract
The infinite dilution activity coefficient plays an important role in the separation of mixtures. In

order to improve our understanding of the thermodynamic properties of mixtures and focus our
research on the molecular species most likely to yield good results, we explored several different
machine learning estimators and their performance when predicting the slope of the infinite dilution
activity coefficient at approximately room temperature for 1735 molecular species. A comparison was
made between the estimators' performance with and without COSMO-SAC electronic patch data. The
estimators' performance with and without a principal component analysis was also examined.
Goodness-of-fit scoring distributions show that the patch data provides meaningful improvements to all
of the estimators. However, while the electronic patch data improves the goodness-of-fit score, the
estimators performed at nearly the same level with exclusively atomic data. The most accurate
estimators were the non-linear models. This implies that the IDAC is not a linear combination of the
chosen features, but functions more akin to a decision tree.

Table of Contents
Abstract..2
Table of Contents...2
Introduction..2
Methods..3

Dataset Creation..3
Ridge Regression...5
Random Forest Regression..6
Lasso Regression...6
ElasticNet..6
Least Angle Regression...7
k-Nearest Neighbors Regression...7
Gradient Boosting Regression...8
Stochastic Gradient Descent Regression...8
Support Vector Regression..9
Bayesian Ridge Regression...9
Machine Learning Methodology...9

Results..10
Discussion..12
Conclusion/Recommendations for Future Investigations..15
Acknowledgements..15
References..16
Appendices...18

Python Library Versions..18
Hyperparameter Graphs..18

Introduction
In the past few decades, much progress has been made towards automated pattern-matching

with computers. The umbrella term of “machine learning”[26] describes the methods underlying this
field of science: a machine is taught what its input looks like and provides an output based on these.
The two main areas of supervised and unsupervised machine learning divide these methods into a

3

group where the output is known in advance, the machine being taught to predict this output, and a
group where the output is learned organically by the machine. In supervised learning, there are once
again two main areas: regression and classification. Regression describes a continuous-valued output,
whereas classification describes a discrete, binned output that is not necessarily numerical.

These forms of machine learning have been applied to numerous different fields, including
image recognition[27], stock predictions[28] and biomedical research[29]. In this work, we aim to re-
introduce machine learning into the field of thermodynamics and chemistry by comparing the
performance of different regression estimators on a COSMO-SAC[38][39] dataset and on an exclusively
atomic data dataset, with the output for both datasets being the Infinite Dilution Activity Coefficient
(IDAC)[30][31][32] slope.

The IDAC is of value due to the ability to extrapolate interaction energies from it; in particular,
its use in the development of separation processes is of great importance to the chemical industry [30],
since one can derive the Henry's law coefficient[31][32] and thus P-T-x-y data from the IDAC. The IDAC
has long been of importance to the chemical world[33], and thus, it makes sense to explore possibilities
of predicting the IDAC without requiring experimental data.

Several models for activity coefficient prediction already exist, some of which are UNIFAC [34],
based on a molecular species' functional groups, and COSMO-SAC, based on a molecule's electronic
field. Both of these have versions that improved through further research and fine-tuning[35][36], but of
course have advantages and disadvantages; for one, they are computationally expensive, and do not
provide perfect accuracy[37]. Some processes from the field of machine learning could be used to add
another activity coefficient predictor to the chemist's toolbox. In particular, it would be of great use if
machine learning could be used to predict the IDAC starting from purely atomic data, that is, well-
known and accurate thermodynamic data that is generalizable across molecular species and across
functional groups.

In this thesis, we received COSMO-SAC data and atomic data for over 2233 molecular species,
mostly composed of carbon, hydrogen and oxygen. We also received IDAC data for the temperature of
300 K and 302 K. As such, this work has limited application: the findings cannot be extrapolated to
non-organic molecular species, nor temperatures far from 300 K. The objective of this thesis is to
compare the performance of the machine learning estimators on exclusively atomic data with that of
the estimators on COSMO-SAC patch data, in order to establish whether it would be viable to forgo the
COSMO-SAC data for an extrapolation of the IDAC. This would result in a predictor that is not
particularly expensive computationally, but would provide a rough estimate with sufficient accuracy to
filter out molecular species that are not a good fit for a particular purpose, whether this be a low IDAC
slope or a high IDAC slope.

The methodology for creating our datasets is explained, followed by a short description of each
regression method we employed. The standard methodology for machine learning exercises is
explained. Then, the results between regressors for a dataset and between datasets themselves are
discussed. Finally, we elaborate on what possible improvements can be made, and in which direction
research in this area should focus.

Methods

Dataset Creation

We received the COSMO-SAC data for 2233 different molecules. This data was composed of
three files: the first containing information on electronic patches, the second containing information on
the atoms, and the third containing a predicted IDAC, at the temperatures of 300 and 302 K, based on

4

the COSMO-SAC data. The patch data included area of the patch, its charge, which atom the patch
belongs to, and the patch radius, as well as its location in Cartesian coordinates. The atomic data was
composed of the element the atom belongs to, the atom indices, and its location in Cartesian
coordinates. We appended the atomic mass, the Pauling electronegativity, the atom type - metalloid,
metal, non-metal -, the stable isotope count, the incidence of the most stable isotope in percentage, the
total isotope count, the electron count, the empirical radius, the neutron-to-proton ratio, the maximal
atomic charge, the minimal atomic charge, and the first ionisation energy of the atom.

Out of this data, we fashioned an origin dataset for our experiment. The features engineered in it
are presented in the following table:

Table 1: The features engineered for each molecular species, by data source. The
machine learning estimators used these in order to predict the IDAC slope.

Atom-sourced features Patch-sourced features

total atom count minimal/average/maximal patch charge

count of carbon/hydrogen/oxygen/other atoms total charge of a molecule

minimal/maximal Manhattan distance
between atoms

total patch surface area

minimal/maximal/average electronegativity of
the atoms

patch count

most common occurring element in the
molecular species

largest charge difference between patches
(dipole moment)

number of stable isotope variations center of charge in Cartesian coordinates

incidence of the most common isotope
combination in percentage

total number of isotope variations

minimal/maximal/average proton count

minimal/maximal/average atomic radius

average neutron-to-proton ratio

maximal/minimal atomic charge possible

minimal/maximal/average ionisation energy

total mass

molecular volume

For 825 of the molecular species, the molecular volume was not available. The volume for these
molecular species was estimated using a k-Nearest Neighbors algorithm, with the five closest
neighbors, the Euclidean distance, and uniform weights. A flag was added to the data to identify
molecular species for which the volume was estimated in this fashion.

In the preprocessing stage, we removed outliers using the 1.5 interquartile range (IQR) rule.
This left us with 1735 molecular species. Finally, in order to reduce the possible effect of large ranges

5

and skew for any given dimension, the dataset was normalized with a Yeo-Johnson power
transformation[1]

ψ(λ , y)={
((y +1)λ −1)

λ
if λ ≠ 0, y ≥ 0

log(y +1) if λ=0, y ≥ 0
−((−y +1)(2−λ)

−1)
2 −λ

if λ ≠ 2,y<0

−log(−y +1) if λ=2,y<0

where λ is the power parameter, bounded by 0 and 2, y is the value to normalize, and ψ is the
normalized value, a function of λ and y. Our values for λ were chosen independently for each feature
and automatically, in a manner such as to maximize the profile log likelihood.

Four datasets were then created from this root dataset. The first, named all, includes all the
features engineered from the original COSMO-SAC data, as well as features derived from atomic data.
A second dataset, named atom, includes only the features that can be derived exclusively from atomic
data, that is, without any information on the electron probability patches available through COSMO-
SAC. The third and fourth datasets, with the suffix _pca, are the first two datasets having undergone a
principal component analysis (PCA)[41]. This process finds a linear combination of the dimensions
present in the data that best describes its variability, in order to reduce the dimensionality of the data. In
the creation of the PCA datasets, we removed dimensions until only 75% of the variability was still
explained by the new, linearly combined dimensions.

We examined the performance of ten estimators[13] in our experiment.

Ridge Regression

The ridge regression[2] is similar to an ordinary least-squares (OLS) linear regression. In some
cases of an ordinary least-squares regression, multiple solutions exist; these are called ill-posed
problems, since they do not conform to Jacques Hadamard's definition of a well-posed problem [40]. In
order to counteract this and provide a unique solution, the problem must be re-formulated so that we
have a stable algorithm to solve. Ridge regressions do this via a regularization term which gives
preference to more particular solutions. Where OLS regressions minimize the sum of the squared
residuals

||y−Ax ||2
2

the ridge regression minimizes the following

||y−Ax ||2
2
+ ||Γx ||2

2

with y as the vector of target values, x as the vector of coefficients, A as the input matrix and ||x||2

indicating the Euclidean norm. The regularization term includes the factor Γ, which is called the
Tikhonov matrix[2]. This is frequently chosen as a multiple of the identity matrix. In our solutions, the
Tikhonov matrix is directly derived from the hyperparameter α

Γ=α I

6

where I represents the identity matrix and α is an integer value. This regularization method is also
known as L2 regularization. For α = 0, the ridge regression reverts to a OLS regression.

Random Forest Regression

Random forests are an ensemble method[21]22][23], meaning they are composed of several sub-
estimators. Each individual estimator is a decision tree which takes different branches depending on the
values for particular dimensions. The decisions themselves are chosen by the computer in order to
maximize variance between its two branches. However, since a single decision tree is prone to overfit
to the data - that is, it is prone to creating branches until only a single data point is found at each
“leaf” -, several of these decision trees are created based on samples taken from the training data and
their estimate for the test value is averaged. This helps prevent that overfit, i.e., that the estimator learns
exclusively its train data and isn't generalizable to a test dataset. Since the trees are not correlated, they
can be grown in parallel, which is a computational advantage.

Available hyperparameters for managing the estimator include the number of estimators n, the
maximum depth of a tree, the minimum number of samples at a leaf nLeaf, the loss criterion to use
between mean squared error and mean absolute error, and the maximum number of dimensions to look
at when looking for the best split. The trees can also be built upon the entire dataset instead of upon a
sample of the training data, but this causes the trees to be very correlated, increasing the bias of the
estimator.

Lasso Regression

The lasso regression[4] is also similar to the OLS linear regression. The difference is once again
a regularization term. Instead of minimizing the sum of the squared residuals

||y−Ax ||2
2

a Lasso regression minimizes the following

1
2⋅n

|| y−Ax ||2
2
+ α ||x ||1

with n being the number of samples in the dataset, and ||x||1 representing the absolute value norm. This
is similar in format to the ridge regression, but instead of a squared regularization term, we minimize
the sum of an absolute value. This regularization format is named L1 regularization[3][4][6]. L1
regularization also reduces the effective number of features, since it yields many coefficients equal to
zero. This is also directly controlled by the selection of the parameter α, which is once again a
hyperparameter in our solution. Similarly to the ridge regression, the solution reverts to an OLS
regression with α = 0.

ElasticNet

The ElasticNet regression[5] is a combination of the lasso and the ridge regressions. It uses both
L1 and L2 regularization in order to solve the linear model[5][6][7]

7

1
2⋅n

|| y−Ax ||2
2
+ α L1 ||x ||1 + 0.5α (1 −L1) ||Γx ||2

2

where L1, bounded by 0 and 1, represents the ratio of regularization as per L1 or L2. Together with α,
this is also a hyperparameter which we provide to the model. For α = 0, this also collapses into a OLS
regression, and for L1 = 1 or L1 = 0 it collapses to a lasso and ridge regression, respectively.

Least Angle Regression

The least-angle regression, also known as LARS[8][9], operates similarly to a forward stepwise
regression. Every dimension's coefficient starts at zero. At each step of the regression, it finds the
dimension that is most correlated with the target and increases its coefficient. If there is more than one
dimension with the most correlation, an equal angle between the two features is chosen instead. The
method is usually continued until all the dimensions are involved in the estimator. In our case, we can
control the number of nonzero coefficients via a hyperparameter. In this method, correlated dimensions
have correlated growth of their coefficients. This represents a problem for high-dimensional data, since
it is probable that there are dimensions with collinearity, even to a small degree. The LARS method is
also very sensitive to noise, since it is based on refitting upon the data iteratively.

k-Nearest Neighbors Regression

The k-nearest-neighbors regression[18] is centrally based on a distance calculation. For every data
point, the distance to all other data points is calculated and the k nearest neighbors are selected. The
output is then either a simple or weighted average of the neighbors' results. Since calculating the
distance for n data points involves n! calculations, shortcut methods have been developed that provide
faster processing at the cost of accuracy. For example, if two points A and B are very distant from each
other, and a third point C is near point A, then it isn't necessary to calculate the distance between points
B and C, since logically they will also be very distant. In our experiment, the two shortcut methods we
had available were k-dimensional trees and ball trees.

The k-dimensional tree bases itself on a similar idea to two-dimensional quad-trees, or three-
dimensional octrees. The dimensional space is recursively divided into subregions, with greater detail
being given where there are more data points[19]. This subregion construction occurs quickly, and once
it is done, the distance between two data points can be calculated much quicker. However, this method
is limited in applicability due to it becoming inefficient when there are more than 20 dimensions in the
data.

The ball tree addresses these high-dimensional inefficiencies. Where the k-dimensional tree
divides the data into subregions along the dimension axes, ball trees divide the data into hyperspheres.
The tree construction takes longer, but the resulting structure provides the advantages of k-dimensional
trees at a high dimensionality[20].

Both of these methods are also able to revert to brute-force distance processing via a
hyperparameter named leaf_size. This is useful, since the tree calculation can be more expensive than
the brute-force approach when there are several data points clustered together.

The distance between two points can also be calculated in several ways, the most common of
which are the Manhattan distance and the Euclidean distance. In our experiment, we had a
hyperparameter p available for the Minkowski distance, which with p = 1 is equivalent to the
Manhattan distance, and with p = 2 is equivalent to the Euclidean distance.

8

Gradient Boosting Regression

Gradient boosting[24], similar to the random forest, is also based on decision trees, but unlike its
counterpart, these trees are shallow and sequential. The estimator reduces bias - the difference between
the average prediction of the model and the target itself - as much as possible. It accomplishes this by
progressively adding decision trees, fitting against the negative gradient of a loss function[25].

The decision trees used for estimating are termed weak learners, since they are very variable
and individually, do not predict the target value much better than a random function. However, since
these trees are built sequentially, upon each other's loss gradients, they aggregate the predictive power
of the model and perform much better as an ensemble.

The hyperparameters for this regressor are very similar to the random forest's. There are still
variables for the minimum number of samples at a leaf, the number of estimators n, the maximal
number of features to consider for a decision, and the maximal depth of the estimators. However, there
are other hyperparameters that affect the regressor. Since the estimator is based on the gradient of a loss
function, the choice of this function is central to its performance. For regression, the available loss
functions were least-squares, the least absolute deviation, the Huber loss, and the Quantile loss. Finally,
there is a parameter for the learning rate, which lowers the contribution of each individual tree the more
trees there are.

Stochastic Gradient Descent Regression

This regression is a type of stepwise regression. The gradient of the loss is estimated one sample
at a time and the model is updated according to its learning rate[14][15], which decreases for each sample
learned from[17]. This is also a linear model with both L1 and L2 regularization[16]; as such, it can
implement either one, or a combination of both, similarly to ElasticNet. Like the ElasticNet model,
there is a hyperparameter α, and a hyperparameter L1 to control the ratio between L1 and L2
regularizations. The loss function used is also an important hyperparameter. This loss function can also
be influenced by a hyperparameter ε, if it is not the OLS loss. Finally, the learning rate η and its change
schedule controls how quickly the regressor learns. The learning rate can be selected to start at a certain
value η0 and then follow different schedules, which can also be influenced by an exponent
hyperparameter pow_t.

Available to us were four different loss functions: the OLS loss, Huber loss, ε-insensitive, and
squared ε-insensitive. The OLS loss performs as above. Huber loss modifies OLS in that, past a
distance of ε, the loss function changes from squared to linear. This makes Huber loss less susceptible
to outliers when compared to OLS loss. ε-insensitive ignores errors under a threshold value of ε, with a
linear loss for anything further than the threshold. Finally, the squared ε-insensitive operates similarly
to ε-insensitive, but uses a squared loss instead of a linear loss. For the latter three loss functions, the
choice of ε is vital for the model's results.

For the learning rate schedule, the choice was between another four options: constant, adaptive,
optimal, or inverse scaling. The constant schedule keeps η at the constant value η0 throughout the
model's training. The adaptive schedule similarly keeps η at the constant η0, up until the loss difference
between training iterations is too small; η is then divided by 5, and the training continues. The optimal
schedule is based on α, as well as the number of samples and current iteration number and a third
parameter t0, which is an initial learning rate scaled by α. The inverse scaling schedule is based on a
choice of η0, the number of samples and current iteration number, and the exponent pow_t.

By the nature of following the loss gradient, this estimator is susceptible to local minima and is
not guaranteed to find the global loss minimum.

9

Support Vector Regression

The support vector regression[12] bases itself on the assumption that there is always a tolerable
amount of error. The estimator finds a subset of datapoints that substantially influence the regression
estimator. Any datapoints at a maximal distance of ε to the model prediction are ignored, with the
remaining datapoints being termed the support vectors. Thus, it finds a hyperplane with a maximal
error of ε. This hyperplane can be calculated using different kernels, the most common of which are a
simple linear, a polynomial, a radial basis function, or a sigmoid kernel. The estimator finds the
smoothest possible hyperplane in the data it is given; however, it's not always possible for this
estimator to be entirely smooth. The hyperparameter C trades off smoothness of fit with accuracy of
edge cases. A last hyperparameter γ controls how much influence a single datapoint has, with a larger γ
signifying lower influence over distant datapoints.

Bayesian Ridge Regression

A Bayesian ridge regression bases itself on an OLS regression and on Bayesian inference[10][11].
The model assumes that the output is distributed in a Gaussian fashion over the dimensions. The
computation method itself starts with coefficients for each dimension that are equivalent to
uninformative Bayesian priors. The values are given from gamma distributions that are created with
hyperparameter values for the shape and inverse scale. The coefficients are then influenced by the data
points in a similar fashion to Bayesian inference. This model usually yields similar results to a ridge
regression, except the regularization that the Bayesian ridge has is also learned from the data.

Machine Learning Methodology

In order to have consistent, reproduceable results that do not present bias, the methodology of
machine learning must be followed. It is standard to separate the dataset into two: the first part for
training, and the second for testing. Since most of the above estimators are prone to overfitting, that is,
learning its training data very well but not being extensible, testing on data that the estimators have not
been exposed to is paramount to obtaining an accurate scoring mechanism.

The separation into train and test data, and several of the estimators involve a random
component. This random component is important to ensure that the estimators learn as varied data as
possible - that is, so that they are not localized functions in the parameter space. However, given that it
is necessary to be able to reproduce results, a state of randomness must be given to the scripts. This
also fosters trust in the estimator, since it is guaranteed to always learn the same way, provided it is
given the same inputs.

All of the estimators also possess hyperparameters, that is, parameters that must be given to the
estimator and cannot be learned from the data. Examples are the L1-to-L2 regularization ratio of the
ElasticNet or the number of estimators to use in a Random Forest regressor. It is not always known
what the best values for these are; in order to find the best combination of hyperparameters, there are
three main procedures: first, a grid search; second, a random search; and third, a pseudo-random search
with gradient descent across the parameter space.

The grid search bases itself on a set list of values that must be given to the program. The
program iterates over the combinations of the values given per hyperparameter until it has exhausted all
possibilities. The hyperparameter combination that performed best in cross-validation is selected.

The random search bases itself on parameter distributions that must be given. For a number of
iterations - also a given -, the program randomly samples from these distributions and cross-validates
the model. At the end of all iterations, the best performing hyperparameter combination is selected.

10

The third option, a pseudo-random search with gradient descent, is similar to the random search.
However, instead of sampling entirely randomly from the parameter space, it examines what the
gradient is at the sampled point and finds the location in the parameter space most likely to yield good
cross-validation results. This method can perform very well, but is also susceptible to local minima.

All three procedures also require what is called cross-validation - a separation of the training
data into subsets that serve the testing purpose for finding the optimal hyperparameter combination. In
our script, the training dataset was split into 10 folds, 9 of which were used for training and the last
being used for measuring performance of the hyperparameter combination. All combinations are
trained and scored, and the mean cross-validation score is established. The scoring mechanism can vary
depending on the problem space, but it is usually the mean square error or the mean absolute error.

Finally, having the best hyperparameter combination, the estimator is trained on the entire
training dataset. It is then given the test dataset without the target variable and predicts what it should
be. The comparison between the predicted values and the true values yields the score for the estimator.

All the estimators were exposed to the same procedure. The random state of the Python code
that was run was set to a constant of zero in order to ensure reproduceability of our results. 80% of the
each dataset was sampled pseudo-randomly and the estimators' hyperparameter space was explored
with a random search. The random search was chosen in order not to fall into local minima and due to
the ease with which it could be implemented. This random search of the hyperparameter space was
done for 3000 iterations, upon the end of which the best performing combination of hyperparameters
was chosen. For each of the datasets, the same hyperparameter distribution was chosen. This ensures
that comparisons of performance between datasets can be made confidently.

The R2 goodness-of-fit score for each of these iterations, along with the dataset it was trained
on, was measured and recorded. The individual graphs for correlations between a hyperparameter and
the mean cross-validation score for that estimator can be found in the appendix. The best
hyperparameter combination was then used for the following scoring procedure, which deviates from
the standard machine learning procedure.

For each dataset, 1000 random shufflings of the data were created. 90% of the data was taken
for training the estimators, with the remaining 10% being used for scoring. This yields a distribution of
goodness-of-fit scores.

Finally, for each estimator, the goodness-of-fit distributions were compared. The p-values were
computed between the all and the atom; between the all and the all_pca; and between the atom and the
atom_pca datasets.

Results
From the above methodology, the following box plots and table were derived:

11

Diagram 1a: Box plot of goodness-of-fit scores by machine learning estimator and
dataset. The datasets shown are all, which included the entire input dataset, and atom,

which was composed exclusively of features engineered from atomic data.

Diagram 1b: Box plot of goodness-of-fit scores by machine learning estimator and
dataset. The datasets shown are all_pca, which is the entire input dataset having undergone a
principal component analysis, and atom_pca, the subset of features engineered from atomic

data having undergone a principal component analysis.

12

For clarity, the above plots were trimmed to the R2 range of (-1, 1).

Table 2: Estimators and the p-values between datasets.

Estimator p - all/atom p - all/all_pca p - atom/atom_pca

Ridge 1.55⋅10-41 5.82⋅10-37 2.34⋅10-74

Random Forest 3.81⋅10-11 3.72⋅10-30 5.45⋅10-01

Lasso 1.58⋅10-40 4.38⋅10-32 1.49⋅10-74

ElasticNet 1.45⋅10-41 1.30⋅10-35 6.43⋅10-79

LARS 1.92⋅10-22 3.81⋅10-10 8.30⋅10-08

k-Nearest Neighbors 4.45⋅10-05 2.52⋅10-01 2.17⋅10-02

Gradient Boosting 1.66⋅10-04 4.57⋅10-41 9.82⋅10-04

Stochastic Gradient Descent 8.50⋅10-39 8.18⋅10-38 4.91⋅10-73

Support Vector Regression 3.21⋅10-25 4.11⋅10-09 3.78⋅10-13

Bayesian Ridge 6.79⋅10-43 2.71⋅10-37 2.54⋅10-72

The best-performing estimator, as per mean R2 score across all four datasets, was the support
vector regression, with an average R2 of 0.6351. The worst-performing was the LARS regression, with
an average R2 of 0.2288. The estimator with the best maximum performance was the gradient boosting
regressor, with an average maximum R2 of 0.9030. The estimator with the worst maximum
performance was also the LARS regression, with an average maximum R2 of 0.3977. It should be noted
that these goodness-of-fit scores are calculated with the normalized data. The below table shows a few
sample predictions de-normalized and their true values, as calculated by a k-Nearest Neighbors
estimator with an R2 score of 0.6935:

Table 3: Sample predictions from a k-Nearest Neighbors algorithm and their deviation.

InChI key Predicted IDAC
slope

Actual IDAC
slope

Δ (%)

UNFUYWDGSFDHCW-UHFFFAOYSA-N -897.32 -737.78 21.62

FAIAAWCVCHQXDN-UHFFFAOYSA-N -144.80 -148.95 -2.78

ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.030 0.053 -43.13

DFNYGALUNNFWKJ-UHFFFAOYSA-N 0.027 0.012 124.80

LQRLKPVYXRVAPK-UHFFFAOYSA-N -211.34 -1108.31 -80.93

Discussion
For the discussion of the results, we will start with the between-estimators performance across

datasets. We will then move on to the performance between datasets, and finally, the absolute
performance, once the predictions have undergone the inverse power transformation.

13

It is apparent from the nature of the problem at hand that the IDAC is not a linear combination
of any of the engineered features. Even with the electronic patch data from COSMO-SAC, to calculate
the IDAC a “decision tree” pattern is required. As such, it was expected that the linear models would
perform very poorly. This was reflected in the results of the experiment: All of the linear estimators had
mean goodness-of-fit scores in the 0.20-0.30 range. This tells us that while there is some variability in
the data to be explained by a linear model, it is not nearly enough to fully predict the normalized IDAC.
Out of all the linear models, LARS had the worst average performance. This is likely due to the large
dimensionality of the data and the presence of noise, despite our removal of outliers. The three best
linear models - the Ridge regression, the ElasticNet and the Stochastic Gradient Descent - had
marginally better performances. This points us to regularization being an important factor in these
linear models - specifically, L2 regularization. In all, atom and atom_pca, The best hyperparameter
combination for ElasticNet, in fact, had very low L1 influence. The best hyperparameter combination
for SGD agreed with ElasticNet: in all datasets except for all_pca, the regularization penalty was
entirely based on L2.

As for the non-linear models, they performed far better on average. Particularly promising were
both of the decision tree models, Random Forest and Gradient Boosting. The best hyperparameter
combinations for Random Forest indicate that mean absolute error was the better loss scoring
mechanism for the datasets having undergone PCA. For the Gradient Boosting regressor, it is apparent
that far more estimators are required in order to have a proper prediction from it, especially for the PCA
datasets. The k-Nearest Neighbors model also performed strikingly well, but unfortunately it cannot
provide us with any information for data far away from its training data, given the nature of the model.
It is possible that, given more data to train on, the k-Nearest Neighbors model would perform a lot
better. Finally, the Support Vector model was also particularly promising: It provided a very tight
distribution of goodness-of-fit scores, indicating that it was not as susceptible to sampling effects
between the training and test datasets. The best hyperparameter combination for it was also fairly
consistent across all datasets: it preferred the radial basis function kernel, as well as a C penalty
hyperparameter of 2, indicating that it placed a higher priority on avoiding being extremely far from the
true value in the training data. This also means the Support Vector model naturally requires a longer
time to train, since it prefers a harder margin for its hyperplane.

Between datasets, it is apparent from the box plot above that the estimators trained on the PCA
datasets perform much worse than their non-PCA counterparts. The most striking dropoff in accuracy is
in the Random Forest and the Gradient Boosting models, which lose substantial performance on the
all_pca dataset. Given that they are both based on decision trees, this raises the possibility that the 25%
variance defined by the dimensions thrown out in the PCA process play a substantial role in the leaf
nodes of the decision trees. As expected, the dataset with the best overall performance was indeed all;
this makes intuitive sense, since it is the one that contains the most information overall. LARS was the
only model with an arguably worse performance in the all dataset, and this is once again likely due to
the high dimensionality and collinearity of the data.

As for the p-values between datasets, it is also immediately clear that these are very distinct
goodness-of-fit distributions. This is also what was expected, since the COSMO-SAC patch data
provides so much more information on the electronic distributions of molecules. One such example
would be isomers: all isomers for a molecular species would have a vastly different electronic
distribution, yet mostly similar atomic statistics. The added value of this information is a great
differentiator between the all and the atom datasets. The distinctness of distributions between all and
all_pca, and atom and atom_pca respectively, is also clear from the outset: the latter possess only 75%
of the variability in data when compared to the former. With such results, it is abundantly clear that all
the models relied on the additional features for their predictions.

14

The one notable, curious exception to the above is the p-value for the Random Forest between
the atom and atom_pca datasets. Even after a sample size of 1000, there is still a 54.5% likelihood that
these are the same distributions for goodness-of-fit scores. While other p-values are in the range of
10-10 or lower, meaning it is extremely unlikely that they are from the same distribution, this outlier
stands out. It is possible that this is only an artifact of the vast array of comparisons we are making in
this paper - if you explore different hypotheses repeatedly, it is statistically likely that 5% of the
analyses will have a p-value of 0.05 -, but it is interesting nonetheless.

If we see these p-values as indicators of mechanisms through which an estimator learned, we
can also glean additional information. It is clear that k-Nearest Neighbors learns through approximately
the same mechanism every time, except its distance estimates are more precise the more dimensions we
have in the dataset. This shows in its p-values: while the distributions are obviously very different, they
are still similar enough to yield p-values that are understandable. This contrasts greatly with the
Stochastic Gradient Descent p-values: these distributions are so different that one could surmise they
have learned different mechanisms of interpreting the data they are given.

However, goodness-of-fit scores can only go so far in displaying accuracy. For this purpose, we
have taken some of the predictions of a k-Nearest Neighbors model and undergone the inverse Yeo-
Johnson transformation in order to compare the predicted and actual IDAC slopes in absolute terms.
Table 3 shows us a small sample of predicted values and their deviations from the actual values for an
estimator that had a goodness-of-fit score of 0.6935. While the predicted values are obviously not on
the mark, they are still within one order of magnitude for this sample, which is a good indicator. It is
likely that such a predictor could be used as a first, very non-specific filter for estimating IDAC slopes
around the temperature of 300 K. However, it would still require a lot of experimentation and research
in order to establish the true value of the IDAC at these temperatures. If we took the estimator that
performed best in exclusively atomic data - namely, the Gradient Boosting regressor - and further
optimized it, it is within the realm of possibility that we could find a better set of hyperparameters for
the estimator. If we go one step further and take the predicted values for several estimators, such as in
Table 4,

Table 4: Sample predictions from four different estimators, their average prediction, and their deviation.

InChI key k-Nearest
Neighbors
prediction

Gradient
Boosting

prediction

Random
Forest

prediction

Support
Vector

prediction

Average
prediction

Actual
IDAC
slope

Δ (%)

QWVGKYWNOKOF
NN-UHFFFAOYSA-N -5.36 -4.52 -1.48 4.95 -1.60 -3.15 -49.05

KVZJLSYJROEPSQ-
OCAPTIKFSA-N -2.37⋅104 -2.42⋅104 -2.01⋅104 -1.03⋅104 -1.96⋅104 -2.65⋅104 -26.11

ARCGXLSVLAOJQL
-UHFFFAOYSA-N -0.73 -74.43 -69.41 -116.76 -65.33 0.00753 -8.7⋅105

LWCSGONZUGPMH
I-UHFFFAOYSA-N -52.61 -349.75 -101.17 -220.58 -181.03 -6.17 2832.4

AFYPFACVUDMOH
A-UHFFFAOYSA-N -323.20 -336.86 -182.53 16.00 -206.65 -62.74 229.39

it is likely that we will have a moderate understanding of the IDAC slope at 300 K - enough to inform
us whether a molecular species likely has a good slope for further experiments.

15

Conclusion/Recommendations for Future Investigations
The impact of machine learning on the field of thermodynamics, and on predicting

thermodynamic properties, has not yet shown itself fully. This paper is proof that simple machine
learning algorithms are able to learn a modest amount of information from relatively little data, enough
to provide predictions for the IDAC slope that are mostly within one order of magnitude of the actual
value. Despite the accuracy of these predictions not being superb, it is clear that they are better than a
random guess - and if given more data points and given greater exploration of the hyperparameter
space for each of these estimators, it is natural that they will predict the IDAC far better than what this
paper presents.

As such, future research on this topic should focus on the non-linear estimators: k-Nearest
Neighbors, a highly dataset size dependent estimator, Random Forest, a simple yet strikingly accurate
model, and Gradient Boosting and Support Vector regressions, both estimators very dependent on
training time. The research should acquire far more datapoints, and from a more varied parameter
space, in order to be more generalizable; and it should aim to improve the performance of these models
when given exclusively atomic data. If such a model were available, it would certainly compete with
UNIFAC and COSMO-SAC, at least in predicting the IDAC and its slope.

Another possibility includes the creation of a neural network model to explore this space. Such
models should learn properties directly from the molecular structure of a molecular species. These
models could then also create structures which present the wanted properties. This would be an entirely
new paradigm of molecule and mixture creation, where we explore the possibilities of our mixtures
through simple, artificial intelligence simulations first, then move on to experimenting in the lab.

On a broader scope, other thermodynamic properties should also be explored. The nuances of a
molecule are very hard to capture in a model such as COSMO-SAC, but with a kind learning field such
as chemistry - where interactions are immediately effective and there is feedback on whether an
estimator is correct or not -, we believe these machine learning models can learn these small differences
in behavior and predict thermodynamic properties far more accurately than this first foray.

Acknowledgements
I would first like to thank Jadran Vrabec, for taking my project on. I would like to thank Ian

Bell and Andreas Jäger, for their help in acquiring the COSMO-SAC data I used in this work. I would
also like to thank my friends and family for their support during both this thesis project and my
undergraduate studies in general. Finally, I would like to thank Tobias Fischer and Bruno Kosinski,
without whom I would not have been able to begin my studies in the first place.

16

References
(1) Yeo, I.-K. A new family of power transformations to improve normality or symmetry.

Biometrika 2000, 87, 954–959.
(2) Willoughby, R. A. Solutions of Ill-Posed Problems (A. N. Tikhonov and V. Y. Arsenin).

SIAM Review 1979, 21, 266–267.
(3) Santosa, F. and Symes, W. W. Linear Inversion of Band-Limited Reflection Seismograms.

SIAM Journal on Scientific and Statistical Computing 1986, 7, 1307–1330.
(4) Tibshirani, R. Regression shrinkage and selection via the lasso: a retrospective. Journal of

the Royal Statistical Society: Series B (Statistical Methodology) 2011, 73, 273–282.
(5) Liu, M. and Vemuri, B. C. A Robust and Efficient Doubly Regularized Metric Learning

Approach. In Computer Vision – ECCV 2012, Springer Berlin Heidelberg, 2012, 646–659.
(6) Friedman, J., Hastie, T., and Tibshirani, R. Regularization Paths for Generalized Linear

Models via Coordinate Descent. Journal of Statistical Software 2010, 33.
(7) Zou, H. and Hastie, T. Regularization and variable selection via the elastic net. Journal of

the Royal Statistical Society: Series B (Statistical Methodology) 2005, 67, 301–320.
(8) Tibshirani, R., Johnstone, I., Hastie, T., and Efron, B. Least angle regression. The Annals

of Statistics 2004, 32, 407–499.
(9) Hesterberg, T., Choi, N. H., Meier, L., and Fraley, C. Least angle and ℓ 1 penalized

regression: A review. Statistics Surveys 2008, 2, 61–93.
(10) Tipping, M. E., and Smola, A. (Ed.). Sparse Bayesian learning and the relevance vector

machine. Journal of Machine Learning Research 2001, 1, 211-244.
(11) MacKay, D. J. C. Bayesian Interpolation. Neural Computation 1992, 4, 415–447.
(12) Drucker H., Burges C. J., Kaufman L., Smola A. J., and Vapnik V., Support vector

regression machines. Advances in neural information processing systems 1997, 155-161.
(13) Pedregosa F. et al., Scikit-learn: Machine Learning in Python. Journal of Machine

Learning Research 2011, 12, 2825-2830.
(14) Bottou L., and LeCun Y. Large Scale Online Learning, Advances in Neural Information

Processing Systems 16 (NIPS 2003), 2004.
(15) Zhang T. Solving Large Scale Linear Prediction Problems Using Stochastic Gradient

Descent Algorithms, In Proceedings of ICML '04, 2004.
(16) Tsuruoka Y., Tsujii J., and Ananiadou S. Stochastic Gradient Descent Training for L1-

regularized Log-linear Models with Cumulative Penalty, In Proceedings of ACL-IJCNLP,
2009, 477-485.

(17) Shalev-Shwartz S., Singer Y., and Srebro N. Pegasos: Primal estimated sub-gradient solver
for SVM, In Proceedings of ICML '07, 807-814.

(18) Altman, N. S. An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression.
The American Statistician 1992, 46, 175–185.

(19) Bentley, J. L. Multidimensional binary search trees used for associative searching.
Communications of the ACM 1975, 18, 509–517.

(20) Omohundro S. Five Balltree Construction Algorithms, Berkeley: International Computer
Science Institute, 1989.

(21) Geurts, P., Ernst, D., and Wehenkel, L. Extremely randomized trees. Machine Learning
2006, 63, 3–42.

(22) Breiman, L. Machine Learning 2001, 45, 5–32.
(23) Ho, T. Random decision forests, Proceedings of the 3rd International Conference on

Document Analysis and Recognition, 1, 278.

17

(24) Friedman, J. H. Greedy function approximation: A gradient boosting machine. The Annals
of Statistics 2001, 29, 1189–1232.

(25) Friedman, J. H. Stochastic gradient boosting. Computational Statistics & Data Analysis
2002, 38, 367–378.

(26) Ceriotti, M. Unsupervised machine learning in atomistic simulations, between predictions
and understanding. The Journal of Chemical Physics 2019, 150, 150901.

(27) Krizhevsky, A., Sutskever, I. and Hinton, G. E. Imagenet classification with deep
convolutional neural networks, In Advances in neural information processing systems,
2012, 1097-1105.

(28) Shen, S., Jiang, H. and Zhang, T. Stock market forecasting using machine learning
algorithms. Department of Electrical Engineering, Stanford University, Stanford, CA,
2012, 1-5.

(29) Cruz, J. A. and Wishart, D. S. Applications of Machine Learning in Cancer Prediction and
Prognosis. Cancer Informatics 2006, 2.

(30) Sandler, S. I. Infinite dilution activity coefficients in chemical, environmental and
biochemical engineering. Fluid Phase Equilibria 1996, 116, 343–353.

(31) Tse, G., Orbey, H., and Sandler, S. I. Infinite dilution activity coefficients and Henry’s law
coefficients of some priority water pollutants determined by a relative gas
chromatographic method. Environmental Science & Technology 1992, 26, 2017–2022.

(32) Nielsen, F. , Olsen, E. , and Fredenslund, A. Henry’s Law Constants and Infinite Dilution
Activity Coefficients for Volatile Organic Compounds in Water by a Validated Batch Air
Stripping Method. Environmental Science & Technology 1994, 28, 2133–2138.

(33) Ellis, S. R. M. and Jonah, D. A. Prediction of activity coefficients at infinite dilution.
Chemical Engineering Science 1962, 17, 971–976.

(34) Fredenslund, A., Jones, R. L. and Prausnitz, J. M. Group‐contribution estimation of
activity coefficients in nonideal liquid mixtures. AIChE Journal 1975, 21, 1086-1099.

(35) Wang, S., Sandler, S. I., and Chen, C.-C. Refinement of COSMO−SAC and the
Applications. Industrial & Engineering Chemistry Research 2007, 46, 7275–7288.

(36) Jakob, A., Grensemann, H., Lohmann, J., and Gmehling, J. Further Development of
Modified UNIFAC (Dortmund): Revision and Extension 5. Industrial & Engineering
Chemistry Research 2006, 45, 7924–7933.

(37) Fingerhut, R., Chen, W.-L., Schedemann, A., Cordes, W., Rarey, J., Hsieh, C.-M., Vrabec,
J., and Lin, S.-T. Comprehensive Assessment of COSMO-SAC Models for Predictions of
Fluid-Phase Equilibria. Industrial & Engineering Chemistry Research 2017, 56, 9868–
9884.

(38) Klamt, A. Conductor-like Screening Model for Real Solvents: A New Approach to the
Quantitative Calculation of Solvation Phenomena. The Journal of Physical Chemistry
1995, 99, 2224–2235.

(39) Klamt, A. and Schüürmann, G. COSMO: a new approach to dielectric screening in
solvents with explicit expressions for the screening energy and its gradient. Journal of the
Chemical Society, Perkin Trans. 2 1993, 799–805.

(40) Hadamard, J. Sur les problèmes aux dérivées partielles et leur signification physique,
1902, Princeton University Bulletin, 49–52.

(41) Tipping, M. E., Bishop, C. M. Probabilistic principal component analysis, 1999. Journal of
the Royal Statistical Society: Series B (Statistical Methodology), 61.

18

Appendices

Python Library Versions

Library Version

Python v.3.7.0

scikit-learn v.0.20.3

pandas v.0.23.4

NumPy v.1.16.0

SciPy v.1.1.0

Hyperparameter Graphs

Ridge Regression

Random Forest Regression

19

20

Lasso Regression

ElasticNet

21

Least Angle Regression

k-Nearest Neighbors Regression

22

Gradient Boosting Regression

23

24

Stochastic Gradient Descent Regression

25

26

Support Vector Regression

27

Bayesian Ridge Regression

28

	Abstract
	Table of Contents
	Introduction
	Methods
	Dataset Creation
	Ridge Regression
	Random Forest Regression
	Lasso Regression
	ElasticNet
	Least Angle Regression
	k-Nearest Neighbors Regression
	Gradient Boosting Regression
	Stochastic Gradient Descent Regression
	Support Vector Regression
	Bayesian Ridge Regression
	Machine Learning Methodology

	Results
	Discussion
	Conclusion/Recommendations for Future Investigations
	Acknowledgements
	References
	Appendices
	Python Library Versions
	Hyperparameter Graphs
	Ridge Regression
	Random Forest Regression
	Lasso Regression
	ElasticNet
	Least Angle Regression
	k-Nearest Neighbors Regression
	Gradient Boosting Regression
	Stochastic Gradient Descent Regression
	Support Vector Regression
	Bayesian Ridge Regression

